skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gimble, Nathan J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Antimony (Sb) electrodes are an ideal anode material for sodium-ion batteries, which are an attractive energy storage system to support grid-level energy storage. These anodes have high thermal stability, good rate performance, and good electronic conductivity, but there are limitations on the fundamental understanding of phases present as the material is sodiated and desodiated. Therefore, detailed investigations of the impact of the structure-property relationships on the performance of Sb electrodes are crucial for understanding how the degradation mechanisms of these electrodes can be controlled. Although significant work has gone into understanding the sodiation/desodiation mechanism of Sb-based anodes, the fabrication method, electrode composition and experimental parameters vary tremendously and there are discrepancies in the reported sodiation/desodiation reactions. Here we report the use of electrodeposition and slurry casting to fabricate Sb composite films to investigate how different fabrication techniques influence observed sodiation/desodiation reactions. We report that electrode fabrication techniques can dramatically impact the sodiation/desodiation reaction mechanism due to mechanical stability, morphology, and composition of the film. Electrodeposition has been shown to be a viable fabrication technique to process anode materials and to study reaction mechanisms at longer lengths scales without the convolution of binders and additives. 
    more » « less